模糊粗糙集方法在样本归一化中的应用
下载:4523
大小:794KB
语言:简体中文
时间:2012-02-08
大小:794KB
语言:简体中文
时间:2012-02-08
公司:
类型:
环境:
类型:
环境:

摘 要:提出了基于模糊粗糙集理论的样本归一化方法,用于解决因神经网络分类器在不同类样本间距离较近时训练速度较慢的问题。将神经网络的输入作为粗糙集信息系统的条件属性,神经网络的输出作为决策属性,构建决策表。利用粗糙集理论对训练样本离散化,根据离散化样本与两类不同样本间的距离差和两类样本的能量差,利用模糊集理论对该原始样本进行伸缩处理,然后,对伸缩预处理后的样本进行归一化,较后,用归一化处理后的样本对神经网络进行训练。以配电网故障选线为例,对该方法进行了分...