您好,欢迎光临电子应用网![登录] [免费注册] 返回首页 | | 网站地图 | 反馈 | 收藏
在应用中实践
在实践中成长
  • 应用
  • 专题
  • 产品
  • 新闻
  • 展会
  • 活动
  • 招聘
当前位置:中国电子应用网 > 技术应用 > 正文

大功率全方位反射镜发光二极管性能研究

2011年10月14日15:54:22 本网站 我要评论(2)字号:T | T | T
关键字:

中心议题:

  • 大功率全方位反射镜发光二极管性能研究

解决方案:

  • 采用工艺技术提高LED 的出光效率
  • 分析得出实验测试结果


1. 引言


目前大功率LED光提取效率比较低的一个重要原因是LED 衬底的厚度比较大,很大一部分有源区发射的光入射到衬底层被衬底和电极等材料吸收,从而大大降低光的提取效率,进而影响出光,为了改善这一缺陷,近几年利用全方位反射镜 ( omnidirectional reflector,ODR) 将有源区发出的射向衬底的光反射出去是一个兴起的分支. Tu 等采用ZnO 接触作为反射镜减少光源射向顶部时被不透明电极吸收的部分光线; Horng 等在Si 衬底与有源区之间增加反射镜,并在p,n 区两侧分别做粗糙处理来增加出光,制作工艺复杂; 李一博等的利用Si做转移衬底,Au做反光镜和键合界面,ITO做缓冲层和窗口层制作基于Au /Au直接键合的反光镜,是金属反射镜,与ODR 有本质区别并且在实际操作中需要键合技术,工艺相对复杂; 考虑到Ag / SiO2 作为反射镜时,入射光不论是TE 模态还是TM 模态在不同角度上都有很高的反射率,所以本实验中采用现有的芯片,先将蓝宝石衬底减薄,再在蓝宝石衬底上用PECVD 分别镀上一层SiO2和Ag,即构成了白光ODR LED,制作工艺简单,光强提高显著,利于生产实际. 实验中采用电极形状如图1 所示,ODR LED 芯片剖面结构如图2 所示,图2 中蓝宝石衬底下Mirror 为Ag / SiO2.


2. 实验原理


图2 模拟了光在ODR LED 内部发射时所经过的路径: 当在p,n 电极上加上正向压降时,p 区空穴与n 区电子向有源区运动并发生辐射复合,发出的光线有两条路径,一条直接射出如图2 中路径1,另一条射向衬底下的全方位反射镜,并发生反射,从顶面或侧面射出如图2 中路径2,从而增加光射出的路径,增强LED的光通量与光效.

3. 实验样品


本批实验样品采用扬州华夏集成光电有限公司生产的芯片.对一块外延片整体进行测试,发现测试结果基本一致后试制成芯片. 将该外延片一半制做成普通LED 芯片,另一半制做ODR LED 芯片,芯片的尺寸为40 mil. 选取一个单元中的ODR LED芯片如图3 所示,与图2 比较,可以明显看出芯片亮度不同.
 

采用半自动针测机对芯片进行点测并选取与点测平均值较近的单元( 包含ODR 芯片与普通芯片各一个单元) 进行试制成LED 样品,这两个单元裸芯片在封装前的点测结果如表1表2 所示. 从表1 表2 测量结果中可以看出: ODR 芯片比普通芯片的光强1847mcd 提高了244 mcd,相对提高了13. 21% ,这是由于ODR 增加反射光; 在通入相同的350 mA 工作电流时,ODR 芯片的电压比普通芯片的电压3. 202 V 增加了0. 002 V,此误差较小可忽略; 其他方面的测量,两种芯片测试结果基本保持一致.

4. 测试结果与分析

4. 1. 光色电测试结果


对封装后的样品选取普通LED 和ODR LED 各7个,两类LED中不同样品各自编号,先进行LED的快速光色电测试,测试仪器为杭州远方HAAS- 2000 LED 快速光色电综合测试量系统,测试温度为25℃,测试电流为350 mA,两组LED 的测试结果如下,表3 中去除5 号、表4 中去除5 号和7 号等性能不佳的样品,两组样品测量反向漏电流时的反向电压均为- 5. 008 V.

从表3 中可以看出,整体样品品质较好,光通量较高,平均值达到76. 62 lm,光效达到65. 11 lm /W, 并且在正常工作电流为350 mA 情况下,电压仅为3. 362 V,色纯度为10. 3% ,但色温偏高,为7010 K; 表4 看出经过ODR LED 处理后的LED 在光学、电 学、色参数方面都有明显改善,光通量到达81. 25 lm,光效为68. 85 lm /W,比普通LED分别提高了4. 23 lm,3 . 74 lm /W,相对提高了6. 04%,5. 74% ,电压为3. 371 V,仅增加了9 mV. 通过ODR LED 与普通LED的主波长、色温对比,我们认为ODR 对于黄绿光的反射作用要强于蓝光,导致ODR LED 的白光光谱中黄绿光相对普通LED 的光强增加量高于蓝光,这一方面导致ODR LED 的色温比普通LED 的色温更低,降低了1804 K,大幅度提高LED 的色温性能; 另一方面导致ODR LED 主波长红移. 而且 ODR LED 的色纯度明显比普通LED 高,提高 8. 1% ,相对提高了78. 64% .

4. 2. 光谱测试


对测试的ODR  LED 与普通LED 的发光光谱进行测试,结果如图4 所示,从图中可以看到,两种样品均产生两个波峰,并且两个波峰位置相同,一个峰位于445 nm,属于蓝光光谱范围,另一个峰位于 546 nm,为黄绿光光谱范围,这是由于这批白光LED 样品采用在LED 蓝光芯片上涂覆YAG ( yttrium aluminum garnet,钇铝石榴石) 荧光粉,芯片发出的 蓝光激发荧光粉后可产生典型的500-580 nm 黄绿 光,黄绿光再与蓝光合成白光. 利用这种方法制备白光简单,便于实现且效率高,资金投入不大,因此具有一定的实用性.

从图4( a) ,( b) 中可以看出,ODR LED 与普通LED 的第一个峰位,均位于445 nm 处,两种LED 的 FWHM 均为33 nm 左右,但从图中右上角相对光谱强度可以看出ODR LED 的蓝光光谱强度要高于普通LED; 另一个峰位,两种LED 均位于546 nm,ODR LED 的FWHM 为122. 0 nm,普通LED 的FWHM 为120. 43 nm,ODR LED 的FWHM 要略大于普通LED,仍需改进; ODR LED 中黄绿光的光谱强度也 高于普通LED,这都是由于ODR 的反射作用. 但ODR LED 较普通LED 而言,黄绿光的增加量高于蓝光,我们认为ODR 对于白光中黄绿光的反射强度要高于蓝光,使得白光光谱中黄绿光的增加高于蓝光的增加,这也正是主波长红移和色温降底的原因.

4.3. 电学性能测试


对ODR LED 与普通LED进行I-V 特性测试,测试条件为: 电流从0-1000 mA,间隔2mA,测试温度为25℃,测试结果如图5,从图上可以看出,两种LED 的整体电流电压特性很好,均未出现随着电流增大电压出现饱和的情况,说明这批样品品质较好. 当电流小于400 mA 时,ODR LED 与普通LED 的电流电压曲线基本重合; 当电流大于400 mA 时, ODR LED 的电压比普通LED 的电压较高,并且差距越来越大,但始终在误差范围内. ODR LED 的串联电阻为1. 160 Ω,比普通LED的串联电阻1. 102 Ω仅增加0. 058 Ω,两者基本相同.

式中Id 及Ir 分别是由扩散及复合所引起的饱和电流,Rs 为器件的串联电阻.

若忽略Rs 对工作电流的影响,( 1 ) 式可以简化为

I = Idiff exp[αV] + Ire exp[βV]. ( 2)

从图5 可以看出,当电流处于0-1000 mA 时,I-V 特性曲线呈现两种不同的区域.

当I < 400 mA,两种LED 的I-V 特性曲线基本重合,并呈现指数曲线

I = 2. 86 × 10 -3 exp[( 0. 00038V) ]. ( 3)

当I > 400 mA,两种LED 的曲线有所分离,

ODR LED: I = ( 2. 83139 + 0. 00132V) × 10 -3 ,( 4)

普通LED: I = ( 2. 82993 + 0. 00126V) × 10 -3 . ( 5)

由两种LED 曲线的解析( 4) ,( 5) 式也可以看出两种LED 的电压差差距较小,说明ODR LED 处理对LED 器件电压基本无影响.

4. 4. 光学性能测试

对两种LED 的光通量和光效随电流变化进行测量,测量条件与I-V 特性测试相同. 结果如图6 所示,从图中明显看出,两种LED 的光通量随着电流升高而逐渐升高,光效均随着电流的升高而逐渐降低; 而ODR LED 的光通量和光效要始终高于普通LED,这从光通量和光效随电流变化的角度来证实了ODR LED 的优势.

随着电流的逐渐升高,LED 中p,n 区空穴和电子在大电流的驱动下增加了向多量子阱的扩散,使得复合发光逐渐增加,从而增加了光通量,所以两种类型的LED 的光通量均会随着电流的升高而增加. 由于ODR LED 特有的反射作用使得ODR LED 的光通量高于普通LED,并且随着电流的增加其增加的幅度也会高于普通LED. 在光效问题上,在电流逐渐升高时,由于大功率LED 的电流驱动较高,使得芯片内部热效应剧烈,增加了芯片内部非辐射性复合,相对降低芯片的外量子效率,使得芯片光效呈现衰减趋势,导致芯片性能恶化. 但是ODR LED 的光效始终高于普通LED,说明ODR LED 在光衰抗老化中有着显著优势.

4. 5. 色参数性能测试


在LED 的色学参数测试中,实验主要测试了峰值波长、半峰宽、色温随电流的变化而变化,测试电流与前面I-V 特性曲线测试中相同,图7显示峰值波长及半峰宽随电流变化的关系,图8 显示色温随电流变化的关系.

从图7中可以看出,随着电流的增加,峰值波长逐渐发生蓝移,并且ODR LED 的蓝移量为10. 5 nm 要高于普通LED 的蓝移量8. 5 nm,这说明ODR LED 在波长方面的光衰不如普通LED 好. 由于GaN 基材料固有的极化效应,致使多量子阱能带倾斜,产生量子限制斯塔克效应( QCSE) . 随注入电流的增加,多量子阱区的自由载流子增加,由电子和空穴的空间局域性产生的电场可以在一定程度上屏蔽了

网友评论:已有2条评论 点击查看
登录 (请登录发言,并遵守相关规定)
如果您对新闻频道有任何意见或建议,请到交流平台反馈。【反馈意见】
关于我们 | 联系我们 | 本站动态 | 广告服务 | 欢迎投稿 | 友情链接 | 法律声明
Copyright (c) 2008-2024 01ea.com.All rights reserved.
电子应用网 京ICP备12009123号-2 京公网安备110105003345号