您好,欢迎光临电子应用网![登录] [免费注册] 返回首页 | | 网站地图 | 反馈 | 收藏
在应用中实践
在实践中成长
  • 应用
  • 专题
  • 产品
  • 新闻
  • 展会
  • 活动
  • 招聘
当前位置:中国电子应用网 > 技术应用 > 正文

电源控制芯片中的过流保护设计

2011年10月26日13:58:22 本网站 我要评论(2)字号:T | T | T
关键字:应用 电源 可靠性 

  1 引言

  家电、便携电子设备和手持电器的迅猛发展,已使电源适配器芯片成为集成电路的大宗产品类。由于该类芯片中内嵌集成或需要外部连接功率LDMOS 管,应用中的LDMOS 管又需要直接和高压相联接并通过大电流(目前的LDMOS 管已经能耐受数百乃至近千伏的高压)。因此,如何保障芯片和LDMOS 管的安全工作是芯片设计的重点之一。

  利用片上二极管正向压降的负温度特性来监测芯片的热状态,进而控制功率LDMOS 管的开关是一种可行的安全设计方法。但是由于硅片存在热惰性,故不能做到即时控制。该方法更适宜作安全设计的第二道防线。

  从芯片设计看,要确保适配器芯片使用的安全性,比较好的方法应该是直接监测流经LDMOS 管的大电流或LDMOS 管的漏极电压,以实时监控芯片的工作状态。一般采取两种方案:(一)在功率MOS 管源端对地串联一个小电阻用于检测源极电流,如图1(a)所示;(二)是通过检测电路监控LDMOS 的漏端电压,如图1(b)所示。前一种方案至少有以下缺点:(1)由于工艺存在离散性,电阻值很难做到精确(误差在20%左右);(2)源极串入电阻后,使原本导通电阻很大的LDMOS 管的管压降进一步增大,功率处理能力变弱;(3)电阻上流过大电流,消耗了不必要的能量,降低了开关电源的转换效率。

图1(a)串联电阻检测电流图1(b)直接检测漏端电压

图1(a)串联电阻检测电流图1(b)直接检测漏端电压

  而采用后一种方案,因为利用了集成电路的特点(电压采样电路的电阻比精度很容易做到1%),电路处理并不太复杂。重要的是LDMOS 管没有源极串联电阻,可减少能量损耗,不影响LDMOS 管的功率处理能力,提高了电源转换效率。

  直接检测漏端电压判断LDMOS 是否过流的设计思想是在LDMOS 管导通时,通过采样电路检测LDMOS 漏端电压,经比较,过流比较器输出一个低电平过流信号以关闭LDMOS 管;而在LDMOS 管截止期间,采样电路不工作,同时为了提高可靠性将比较器窗口电平适度拉高。

  图2 是实现上述功能的电路框架图,由过流比较模块、控制逻辑等组成。

图2 过流保护电路框架

 图2 过流保护电路框架

  2 电路设计

 

 

 

 

 

 

 

 

图9 控制逻辑电路的仿真

图9 控制逻辑电路的仿真

  闭环控制电路的整体仿真

  如图10 所示,图3 电路和外接LDMOS 形成一个闭环控制系统。仿真结果如图11 所示:在没有发生过流时,栅极电压的占空比较大;有过流发生时,过流信号OverCurrent 将栅极电压强制设置为低电平,关断LDMOS,从而达到了过流保护效果。

图10 闭环总体仿真原理图

图10 闭环总体仿真原理图

图11 闭环总体仿真波形
图11 闭环总体仿真波形

   3 结论

  本文阐述了几种过流检测方法,分析了每种方法的优缺点。设计了一款闭环控制型的过流保护电路,它采用直接检测LDMOS 管漏端电压的方法,可以克服采用电阻检测时消耗能量,芯片容易发热的缺点,同时提高了开关电源DC/DC 的能量转换效率。另外,采取有比采样电路设计,克服了工艺偏差的影响,提高了采样精度。

  基于3μm高压BCD 工艺,我们在Cadence 设计环境中利用电路模拟器Spectre 对该控制电路进行了分模块和整体模块的仿真,结果表明该电路可以较好地实现实时过流保护功能。

  

 

 

网友评论:已有2条评论 点击查看
登录 (请登录发言,并遵守相关规定)
如果您对新闻频道有任何意见或建议,请到交流平台反馈。【反馈意见】
关于我们 | 联系我们 | 本站动态 | 广告服务 | 欢迎投稿 | 友情链接 | 法律声明
Copyright (c) 2008-2024 01ea.com.All rights reserved.
电子应用网 京ICP备12009123号-2 京公网安备110105003345号