满足高性能和功效要求的单芯片CCM PFC及LLC组合控制器
简便的设计方法
使用NCP1910进行设计过程非常简单,只要三步即可完成,如图2所示。第一步是设计PFC段,第二步是设计LLC段,第三步是设计信号交换部分。

电路中的BO及PG电平是由R1、R2、R3决定的,无须感测高压。BO电平在Vbulk电平(如300 V,取决于电源系统的设计要求)时使LLC停止工作;PG电平在Vbulk电平时,器件通知次级端监控电路,产生功率故障(Power Fail)信号;在PFC频率反走输入功率级时,PFC开始降低工作频率。以下是PFC段和/或LLC段运用热关闭及过流、过压、欠压、过功率、输入欠压等保护特性,以及频率反走、跳周期等提升能效的技巧。
NCP1910的工作序列如图3所示,如果PFC未就绪,LLC就不能启动;一旦PFC就绪,就会开始一段20 ms的延迟;延迟结束后PGout引脚假定为低电平,LLC可以开始工作。在拨除交流输入关闭电源时Vbulk降低,到达PG信号时,PGout引脚被释放(开路);如果Vbulk到达LLC停止电平,LLC停止工作;或者如果Vbulk缓慢下降,如处在轻载状态,LLC会在PGout引脚被释放5 ms后停止工作。

图3:NCP1910的工作序列
远程导通/关闭:以专用引脚接收由次级端监控芯片由光耦控制的导通/关闭(on/off)信号;在导通/关闭引脚被释放开路时,PFC及LLC均停止工作;在导通/关闭引脚接地时,PFC开始软启动→PFCok→20 ms后,LLC开始软启动。

图4:远程导通/关闭
热关闭(TSD):过热保护功能有助于实现良好的电源设计。当结点温度超过140℃时,该功能激活,驱动器变为低电平;结点温度降到典型值30℃时器件恢复工作。

图5:热关闭
频率反走:可以提高轻载效率,设定Vfold以确定功率开始反走的Vfold值;当(VCTRL – VCTRL(min))小于Vfold时,频率开始反走;内部钳位限制反走的较大功率;启动时无反走。

图6:频率反走
VCTRL与功率及频率的关系:当输出功率下降时,VCTRL随之下降;当到达反走设定点时,频率线性下降;65 kHz版本将较小频率内部设定为40 kHz。

图7:VCTRL与功率及频率的关系
相关阅读:
- ...· Efinix® 全力驱动AI边缘计算,成功推出Trion™ T20 FPGA样品, 同时将产品扩展到二十万逻辑单元的T200 FPGA
- ...· 英飞凌亮相进博会,引领智慧新生活
- ...· 三电产品开发及测试研讨会北汽新能源专场成功举行
- ...· Manz亚智科技跨入半导体领域 为面板级扇出型封装提供化学湿制程、涂布及激光应用等生产设备解决方案
- ...· 中电瑞华BITRODE动力电池测试系统顺利交付北汽新能源
- ...· 中电瑞华FTF系列电池测试系统中标北京新能源汽车股份有限公司
- ...· 中电瑞华大功率高压能源反馈式负载系统成功交付中电熊猫
- ...· 中电瑞华国际在电动汽车及关键部件测评研讨会上演绎先进测评技术
产品快讯更多