基于ZigBee的休眠唤醒策略
随着无线电技术的不断发展,无线通信逐步融入到生活中的各个方面,针对功耗来源,对于无线传感器网络节点SoC,可以设计如下的工作状态:正常模式、浅休眠模式、深度休眠模式。本文结合ZigBee技术特点,提出一种休眠节能策略,使无线设备在不执行任何操作的情况下进入极低功耗的状态,提高能源的利用率。
1 ZigBee技术
ZigBee是基于IEEE 802.15.4的一种短距离、低功耗的无线通信技术。其网络可容纳大量节点,点对点的较大传输距离为75 m,在传输范围内节点间可以互相通信,支持多种自组织网络拓扑结构。
与传统的无线通信技术相比,ZigBee具有以下特点。省电:两节五号电池工作时间可达2年;可靠:采用CSMA/CA避免数据冲突;高容量:网络较多可容纳65 000个节点;低成本;低速率:传输速率为250 Kb/s;高安全性:支持AES-128加密。因此ZigBee多应用于有成本和功耗要求,且传输速率较低,数据量较少的场合。
2 系统规划
如图1所示,系统由嵌入式控制器、照明控制节点、开关节点和路由节点组成。
嵌入式控制器集中监视和控制照明系统的状态,用户可以通过嵌入式控制器查看系统中所有照明设备的状态,并能通过触摸屏对其进行控制。开关节点作为次级控制单元,可发送开关信号到照明节点,控制其开关状态。然而照明节点是系统中的执行设备,接收控制命令和执行相应的动作。每个开关节点可与多个照明节点绑定。
2.1 网络拓扑
ZigBee网络中,一般存在三种功能设备:网络协调器(具有建立网络和数据转发功能)、路由器(具有数据转发功能)和终端设备(不具有数据转发功能)。本系统采用图1所示的网状拓扑结构。它是一种可靠性高,网络容量大的网络结构。网络中放置若干个特殊的路由器,专门负责进行数据转发。一般情况下,网络中仅有协调器和路由器处于活跃状态,终端设备进入休眠模式。
2.2 节点配置
根据系统各节点的功能要求,嵌入式控制器能够对网络进行集中控制,被配置成协调器,作为网络的建立者;路由节点作为特殊的节点,仅作为数据汇聚点进行数据转发,不执行其他操作;而开关节点仅在手动开关操作后被唤醒,在网络中活跃的时间较短,不需进行数据转发,被配置为终端设备。
3 网络节点节能方案实现
网络节点低功耗设计是无线传感器网络应用开发热点之一。因此,需要通过从硬件设计和软件设计2个方面提出和总结节点的低功耗设计方法。常见的ZigBee SoC解决方案中,节点由处理器(MCU)、无线收发器(RF)、外设和供电部分组成。其中,处理器作为节点的核心单元,负责数据处理和芯片内部资源的调配;无线收发器进行数据包收发,实现网络通信功能。
对于SoC架构,可采用单部件无线传感器休眠模型进行分析。根据参考文献,无线收发器是节点功耗的主要来源。一般情况下,ZigBee网络的数据传输量较小,大部分节点处于空闲状态。为减小网络的能源消耗,可利用ZigBee节点提供的多种休眠模式,关闭空闲节点的无线收发器,使处理器进入休眠状态。
3.1 事件驱动
开关节点的功能在于检测开关面板的操作,发送开关信息到相应的照明节点,不需主动参与无线通信。开关节点采用能耗较低的深度休眠模式,关闭数字稳压器、高速RC振荡器和所有晶体振荡器,只能通过外部中断进行唤醒,其休眠和唤醒过程如图2所示。
3.2 定时唤醒
照明节点作为系统中的执行部分,其主要的工作为接收控制信号和执行相应操作。由于其需要等待无线控制信号来触发服务,因此不能采取通过外部中断的方式进行唤醒。浅休眠模式提供定时器唤醒功能,该模式下关闭数字稳压器、高速RC振荡器和高速晶振,仅保留低速晶振提供时钟,可通过睡眠定时器定时对MCU进行唤醒。
如图3所示,睡眠定时器以周期tperiod对节点进行唤醒。整个唤醒过程与开关节点相同,其平均功率为:
照明节点作为无线照明系统的应用执行部分,是直接为用户提供服务的部件。实施休眠机制后,设备大部分时间将处于休眠状态,只是周期性苏醒过来收发数据或者检测信道的状态。若休眠时间过长,则会影响设备对控制信号的响应速度,甚至导致控制信号传输失败,因此应用中需要对休眠时间进行实验评估,避免用户等待时间过长或操作失败。
关键字:ZigBee 休眠唤醒
4 数据分析
本系统以CC2430为无线通信芯片,以高性能8051为内核,集成ZigBee RF收发器。如上文所述,无线节点采取两种不同的休眠唤醒机制,实现节能策略。根据参考文献,获得数据分析如图4和图5所示。
由图4可见,影响开关节点功率大小的因素有运行时间trun和开关次数n。其中,trun与通信过程有关,控制信息的目标节点越多,trun越大;而开关次数n则由使用习惯决定,平均功率随开关的频繁程度增加而增大。若某开关信息需要同时控制2个照明节点(trun=30 ms),每天开关20次,平均功率约为0.5 mW;控制3个节点,每天开关10次,其平均功率则为0.31 mW。如图5所示,照明节点的平均功率由运行时间trun和唤醒周期tperiod决定。其中,trun与电路设计和执行器件有关;唤醒周期与网络响应速度有关,tperiod越大,网络的响应时间就越长。在照明的控制中,对系统的实时性要求不大,同时考虑到节能和用户操作的要求,唤醒周期取值在250~400 ms之间,照明节点的功率可控制在10mW以下。
5 结语
研究结果证明,对无线节点各部件进行休眠唤醒策略,能有效控制其功耗,提高能源利用率,在家庭自动化和节能环保的发展趋势下,将具有较好的参考价值。
相关阅读:
- ...2012/04/05 10:36·基于ZETA拓扑结构的DC/DC转换器设计
- ...2011/07/05 10:36·勤上光电基于ZigBee+GPRS的LED路灯远程无线监控系统
- ...2009/10/10 13:18·基于Zigbee技术家用无线网络的构建
- ...2008/11/21 16:37·基于ZigBee技术的无线物流仓储管理系统
- ...· Efinix® 全力驱动AI边缘计算,成功推出Trion™ T20 FPGA样品, 同时将产品扩展到二十万逻辑单元的T200 FPGA
- ...· 英飞凌亮相进博会,引领智慧新生活
- ...· 三电产品开发及测试研讨会北汽新能源专场成功举行
- ...· Manz亚智科技跨入半导体领域 为面板级扇出型封装提供化学湿制程、涂布及激光应用等生产设备解决方案
- ...· 中电瑞华BITRODE动力电池测试系统顺利交付北汽新能源
- ...· 中电瑞华FTF系列电池测试系统中标北京新能源汽车股份有限公司
- ...· 中电瑞华大功率高压能源反馈式负载系统成功交付中电熊猫
- ...· 中电瑞华国际在电动汽车及关键部件测评研讨会上演绎先进测评技术